(Siemens, 1994). Software used to prepare material for publication: *SHELXL*97.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: BM1295). Services for accessing these data are described at the back of the journal.

References

- Almond, M. J., Drew, M. G. B., Rice, D. A., Salisbury, G. & Taylor, M. J. (1996). J. Organomet. Chem. 522, 265–269.
- Carmalt, C. J., Crossley, J. G., Norman, N. C. & Orpen, A. G. (1996). J. Chem. Soc. Chem. Commun. pp. 1675–1676.
- Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
- Ferguson, G., March, F. C. & Ridley, D. R. (1975). Acta Cryst. B31, 1260–1268.
- Glidewell, C. (1988). J. Organomet. Chem. 356, 151-158.
- March, F. C. & Ferguson, G. (1975). J. Chem. Soc. Dalton Trans. pp. 1291–1294.
- North, A. C. T., Phillips, D. C. & Matthews, F. S. (1968). Acta Cryst. A24, 351–359.
- Rüther, R., Huber, F. & Preut, H. (1987). Angew. Chem. Int. Ed. Engl. 26, 906–907.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1997). SHELXL97. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
- Siemens (1994). SHELXTL. Siemens Analytical Instruments Inc., Madison, Wisconsin, USA.
- Taylor, M. J., Baker, L.-J., Rickard, C. E. F. & Surman, P. W. J. (1995). J. Organomet. Chem. 498, C14-16.

Acta Cryst. (1999). C55, 337-339

A degraded glycol-substituted *isocloso* ten-vertex ruthenaborane: [(PPh₃)HClRuB₉H₅(OCH₂CH₂OH)₂-(PPh₃)₂]·1.2CHCl₃

HAI-JUN YAO,^{*a*} CHUN-HUA HU,^{*b*} JIAN-MIN DOU,^{*b*} JIE SUN,^{*c*} JING-DE WEI,^{*a*} RUO-SHUI JIN,^{*a*} ZU-EN HUANG^{*a*} AND PEI-JU ZHENG^{*b*}

^aDepartment of Chemistry, Fudan University, Shanghai 200433, People's Republic of China, ^bResearch Centre of Analysis and Measurement, Fudan University, Shanghai 200433, People's Republic of China, and ^cShanghai Institute of Organic Chemistry, Chinese Academy of Science, Shanghai 200032, People's Republic of China. E-mail: pizheng@fudan.edu.cn

(Received 28 April 1998; accepted 12 October 1998)

Abstract

1-Chloro-1-hydrido-2,6-bis(2-hydroxyethoxy)-1,3,5-tris-(triphenylphosphine)-*iso*-*closo*-1-ruthenadecaboranechloroform (1/1.2), [RuHCl(C₄₀H₄₅B₉O₄P₂)(C₁₈H₁₅P)]-- 1.2CHCl₃, is a ruthenaborane based on an *iso-closo* $C_{3\nu}$ stack, with the nine-coordinate metal occupying the sixconnected apical position. The {RuB₉} cage has two B-terminal –OCH₂CH₂OH groups and two PPh₃ substituents.

Comment

RuCl₂(PPh₃)₃ is a versatile metalloborane synthon. A series of ruthenaboranes have been synthesized by the reaction of RuCl₂(PPh₃)₃ with the *closo* ten-vertex borane anion $B_{10}H_{10}^{2-}$ under various conditions (Crook *et al.*, 1984, 1985; Fontaine *et al.*, 1987; Yao *et al.*, 1995). We now report the crystal structure of a degraded glycol-substituted *iso-closo* ten-vertex ruthenaborane, [(PPh₃)HClRuB₉H₅(OCH₂CH₂OH)₂(PPh₃)₂], (I), synthesized in glycol at about 373 K.

A drawing of the molecular structure of (I) is shown in Fig. 1. The ten-vertex iso-closo structure adopts the closed 1:3:3:3 RuB₃B₃B₃ cluster structure, which is similar to that in $[(PPh_3)HClRuB_9H_7(PPh_3)_2]$, (II) (Crook et al., 1985). The Ru atom is bound to three exo-polyhedral ligands (H, Cl and PPh₃) and six B atoms. The distances of Ru to H1, P1 and Cl1 [1.69(8), 2.363(2) and 2.482(2) Å, respectively] are somewhat longer than the corresponding distances in compound (II) [1.53 (3), 2.354 (4) and 2.456 (4) Å, respectively]. Thus, the corresponding trans-Ru-B distances [Ru1-B3 2.482(9), Ru1-B5 2.392(10) and Ru1-B7 2.341 (9) Å] are shorter than those in compound (II) [2.517 (9), 2.402 (10) and 2.353 (9) Å, respectively]. The upper belt of three Ru-bound B atoms (B2, B4 and B6) is closer to the metal atom [2.057(9)-2.205(9) Å] than is the middle belt (B3, B5 and B7), and the Ru1-B3 distance (trans to Ru1-H1) is significantly longer than the distances to B5 and B7, which are trans to Ru1-P1 and Ru1-Cl1, respectively. Each B atom in the upper belt has a cluster connectivity of four, whereas each in the middle belt has a cluster connectivity of five.

In addition to the two PPh₃ substituents on the middle belt of B atoms, there are two $-OCH_2CH_2OH$ substituents on the upper belt at B2 and B6; these groups distinguish the present compound from compound (II). The effects of the two $-OCH_2CH_2OH$ ligands are the

Fig. 1. ZORTEP (Zsolnai & Huttner, 1994) representation of (I), drawn with 30% probability displacement ellipsoids.

increased bond distances of B2—B3, B2—B7 and B2— B8 [1.755 (13)–1.789 (14) Å], and B6—B5, B6—B7 and B6—B10 [1.740 (13)–1.807 (12) Å], compared to those in compound (II) [1.742 (13)–1.774 (13) and 1.734 (14)– 1.775 (10) Å, respectively]. The B—O bond distances of 1.401 (11) and 1.410 (10) Å in (I) are longer than those reported in (II) [1.361 (8)–1.368 (8) Å; Crook *et al.*, 1985].

Experimental

RuCl₂(PPh₃)₃ (0.4 mmol) and (Et₄N)₂B₁₀H₁₀ (0.4 mmol) were dissolved in HOCH₂CH₂OH (*ca* 65 ml) and then heated to about 373 K under an atmosphere of dry nitrogen. After 4 h, the mixture was filtered, and the filtrate was evaporated under reduced pressure (mechanical pump, 383 K). The resulting solid was dissolved in CH₂Cl₂ and chromatographed on silica preparative TLC plates with dichloromethane/ethyl acetate (4:1) as the eluting medium, to give a yellow compound ($R_f = 0.50$; 30 mg). This product was recrystallized from *n*-pentane/chloroform (1:1) to give yellow crystals of (I).

Crystal data

 $[RuHCl(C_{40}H_{45}B_9O_4P_2)-(C_{18}H_{15}P)] \cdot 1.2CHCl_3$ *M_r* = 1292.03 Triclinic *P*I Mo $K\alpha$ radiation $\lambda = 0.71069$ Å Cell parameters from 25 reflections $\theta = 6.8-10.8^{\circ}$

 a = 15.018 (5) Å $\mu = 0.514 \text{ mm}^{-1}$

 b = 18.383 (4) Å T = 294 (2) K

 c = 14.671 (7) Å Square prism

 $\alpha = 98.91 (3)^{\circ}$ $0.34 \times 0.23 \times 0.21 \text{ mm}$
 $\beta = 117.43 (3)^{\circ}$ Yellow

 $\gamma = 97.21 (2)^{\circ}$ Yellow

 $V = 3461 (2) \text{ Å}^3$ Z = 2

 $D_{\tau} = 1.240 \text{ Mg m}^{-3}$ D_{m} not measured

Data collection

Rigaku AFC-7R diffractom-6449 reflections with $I > 2\sigma(I)$ eter $R_{\rm int} = 0.066$ ω scans $\theta_{\rm max} = 25^{\circ}$ Absorption correction: $h = 0 \rightarrow 16$ ψ -scan (North *et al.*, 1968) $k = -21 \rightarrow 21$ $l = -17 \rightarrow 15$ $T_{\rm min} = 0.845, T_{\rm max} = 0.900$ 12 079 measured reflections 3 standard reflections 11 568 independent every 200 reflections reflections intensity decay: -0.42%

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.070$ $wR(F^2) = 0.242$ S = 1.052

Table 1. Selected geometric parameters (Å, °)

Scattering factors from

International Tables for

Crystallography (Vol. C)

Rul—B6	2.057 (9)	Ru1—B3	2.482 (9)
Ru1—B2	2.133 (9)	Rul—HI	1.69(8)
Ru1—B4	2.205 (9)	P2—B5	1.941 (10
Rul—B7	2.341 (9)	P3—B3	1.928 (9)
Rul—Pi	2.363 (2)	O1—B2	1.401 (11
Rul-B5	2.392 (10)	O3-B6	1.410 (10
Ru1	2.482 (2)		
B6—Ru1—PI	120.4 (3)	P1—Ru1—B3	123.0 (2)
B2—Ru1—P1	90.1 (3)	CI1—Ru1—B3	105.3 (2)
B4—Ru1—P1	150.2 (2)	B6—Ru1—H1	69 (3)
B7—Ru1—P1	104.0 (3)	B2-Ru1-H1	136(3)
P1—Ru1—B5	166.6 (2)	B4—Ru1—H1	130 (3)
B6-Rul-Cll	133.5 (3)	B7—Ru1—H1	100 (3)
B2—Ru1—C11	132.8 (2)	P1—Ru1—H1	70(3)
B4—Ru1—Cl1	81.0(2)	B5-Ru1-H1	98 (3)
B7—Ru1—Cl1	174.9 (3)	CII—Ru1—HI	84 (3)
P1—Ru1—Cl1	80.52 (8)	B3Ru1-H1	165 (3)
B5-Ru1-Cl1	104.9 (2)		

The title structure was solved by the Patterson method and refined by full-matrix least-squares techniques. The non-H atoms were refined anisotropically to convergence. H atoms on C and O atoms were included in riding positions [phenyl C— H = 0.93 Å, other C—H = 0.97 Å, O—H = 0.82 Å and U(H) =1.5 $U_{cq}(C,O)$]. The cage H atoms and the Ru-bound H atom were located using Fourier methods and refined isotropically. The CHCl₃ molecule, modelled as atoms C2S, Cl5, Cl6 and Cl7, was refined with an occupancy of 0.20. The C—CI distances were restrained to be approximately equal (1.68 Å).

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1994a). Cell refinement: MSC/AFC Diffractometer Control Software. Data reduction: PROCESS in TEXSAN (Molecular Structure Corporation, 1994b). Program(s) used to solve structure: SHELXS97 (Sheldrick, 1990). Program(s) used to refine structure: SHELXL97 (Sheldrick, 1997). Molecular graphics: ZORTEP (Zsolnai & Huttner, 1994). Software used to prepare material for publication: SHELXL97.

We thank the National Natural Science Foundation of China for support of this work.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: DA1032). Services for accessing these data are described at the back of the journal.

References

- Crook, J. E., Elrington, M., Greenwood, N. N., Kennedy, J. D., Thornton-Pett, M. & Woollins, J. D. (1985). J. Chem. Soc. Dalton Trans. pp. 2407–2415.
- Crook, J. E., Elrington, M., Greenwood, N. N., Kennedy, J. D. & Woollins, J. D. (1984). *Polyhedron*, 3, 901–904.
- Fontaine, X. L. R., Greenwood, N. N., Kennedy, J. D., Thornton-Pett, M. & Zheng, P. (1987). J. Chem. Soc. Chem. Commun. pp. 1717–1718.
- Molecular Structure Corporation (1994a). MSC/AFC Diffractometer Control Software. MSC, 3200 Research Forest Drive. The Woodlands, TX 77381, USA.

© 1999 International Union of Crystallography Printed in Great Britain – all rights reserved

- Molecular Structure Corporation (1994b). TEXSAN. Single Crystal Structure Analysis Software. Version 1.6. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1997). SHELXL97. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
- Yao, H.-J., Fu, J., Jin, R.-S., Wei, J.-D., Chen, J. & Zheng, P.-J. (1995). Chin. J. Struct. Chem. 14, 364–368.
- Zsolnai, L. & Huttner, G. (1994). ZORTEP. A Program for Molecular Graphics. University of Heidelberg, Germany.

Acta Cryst. (1999). C55, 339-341

$[Ni{(CH_3)_2SO}_6]I_4$, a redetermination and reinterpretation

DE-LIANG LONG, HUAI-MING HU, JIU-TONG CHEN AND JIN-SHUN HUANG

State Key Laboratory of Structural Chemistry, Fujan Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, People's Republic of China. E-mail: ldl@ms.fjirsm.ac.cn

(Received 23 June 1998; accepted 9 October 1998)

Abstract

The structure of the title polyiodide compound, hexakis-(dimethyl sulfoxide-*O*)nickel(II) tetraiodide, $[Ni(C_2H_6-OS)_6]I_4$, has been redetermined. The compound comprises discrete $[Ni\{(CH_3)_2SO\}_6]^{2+}$ cations and I_4^{2-} anions. The polyhedron around the six-coordinate Ni atom is a distorted octahedron with the metal atom on a $\overline{3}$ position and six equivalent Ni—O distances of 2.077 (2) Å. The linear uncoordinated centrosymmetric I_4^{2-} polyiodide ion represents a rare example of a tetraiodide ion. It exhibits a central I—I bond of 2.848 (1) Å and two terminal I—I bonds of 3.342 (2) Å.

Comment

In recent years, polyiodides have been the focus of increasing interest due to the high conductivity and non-linear optical properties of many of their salts with sulfur-rich compounds (Wanka *et al.*, 1996; Truong *et al.*, 1993), their ability to introduce partial oxidation into hydrocarbon donor molecules to stabilize mixed valence in metal complexes (Niebling *et al.*, 1996), and their rich and varied structural chemistry. In this area, I_3^- , I_5^- and I_7^- are normally used for the synthesis of these compounds. In contrast, the formation of isolated $I_4^2^-$ ions was indicated by theoretical calculations to be disfavoured (Sæthre *et al.*, 1988). [Co(NH₃)₆I₃I₄]